بررسی سه نوع شبکه عصبی مصنوعی برای مدل سازی افت فشار در سیکلون های جداسازی گاز-جامد و بهینه سازی سیکلون با الگوریتم ژنتیک
نویسندگان
چکیده
در این مقاله به منظور بررسی ارتباط بین افت فشار سیکلون جداسازی و پارامترهای هندسی سیکلون غبارگیری، سه نوع شبکه عصبی مصنوعی انتشار بازگشتی[1]، شبکه عصبی تابع پایه شعاعی[2] و شبکه عصبی رگرسیون تعمیم یافته[3] به کارگرفته شدهاند. پس از آموزش آنها با دادههای تجربی، پارامترهای بهینه عملکردی هر کدام شبکه ها، با روش جستجوی چند مرحله ای[4] به دست آمده اند. شبکهها بر اساس میزان ضریب همبستگی[5]، خطای مربع میانگین و زمان آموزش باهم مقایسه شده و مشاهده شد که هر سه شبکه می توانند با موفقیت سیکلون را مدل کنند. شبکه تابع پایه شعاعی با ضریب همبستگی برابر با 1 بالاترین عملکرد تعمیم یافته[6] و با خطای میانگین مربع[7] برابر با 7-10×6067/1 کم ترین خطا را نسبت به دو شبکه دیگر دارد. پاسخ پیش بینی شبکه انتخابی با پاسخ روشهای تجربی و آماری مقایسه شده و برتری شبکه عصبی انتخابی نسبت به سایر مدلها به وضوح مشخص شده است. نتایج نشان میدهند که شبکه عصبی میتواند جایگزین بسیار خوبی برای مدل سازی افت فشار سیکلونها باشد. 2back propagation neural network/bpnn 3radial basis function neural network/rbfnn 4generalized regression neural network/ grnn 5multi step search/ mss 6correlation coefficient 7generalized performance 8mean squared error/ mse
منابع مشابه
بررسی سه نوع شبکه عصبی مصنوعی برای مدلسازی افت فشار در سیکلونهای جداسازی گاز-جامد و بهینه سازی سیکلون با الگوریتم ژنتیک
در این مقاله به منظور بررسی ارتباط بین افت فشار سیکلون جداسازی و پارامترهای هندسی سیکلون غبارگیری، سه نوع شبکه عصبی مصنوعی انتشار بازگشتی[1]، شبکه عصبی تابع پایه شعاعی[2] و شبکه عصبی رگرسیون تعمیم یافته[3] به کارگرفته شدهاند. پس از آموزش آنها با دادههای تجربی، پارامترهای بهینه عملکردی هر کدام شبکهها، با روش جستجوی چند مرحلهای[4] به دست آمدهاند. شبکهها بر اساس میزان ضریب همبستگی[5]، خطای ...
متن کاملمدل سازی و بهینه سازی سیکلون های جداسازی گاز-جامد با استفاده از سه نوع شبکه عصبی مصنوعی، ژنتیک الگوریتم و روش عددی برای دست یابی به افت فشار کمینه
در این پژوهش سه نوع شبکه عصبی مصنوعی به نام¬های انتشار بازگشتی، تابع پایه شعاعی و رگرسیون عمومی برای مدل¬سازی سیکلون¬¬های جداسازی به کار گرفته شده است. ورودی این شبکه¬ها هفت پارامتر هندسی سیکلون و خروجی آن¬ها افت فشار می باشد. پارامتر عملکردی هر کدام از شبکه¬ها به منظور دست یابی به حداقل خطای مربع میانگین، به روش جستجوی چند مرحله ای، بهینه¬سازی شده و سه نوع شبکه بهینه بدست آمد. این پارامترهای ع...
مدل سازی و بهینه سازی واحد تولید هیدروژن با شبکه ی عصبی مصنوعی و الگوریتم ژنتیک
هدف اصلی این پژوهش، مدل سازی واحد صنعتی تولید هیدروژن براساس تبدیل متان با بخار آب با کاربرد شبکه ی عصبی مصنوعی است. عامل های دبی فراورده و انرژی مصرفی به عنوان عامل های خروجی مدل در نظر گرفته شد و دو شبکه ی عصبی مجزا برای پیش بینی این دو عامل مدنظر قرارگرفت. نتیجه های مدل سازی با دقت بسیار خوب، خطای متوسط مطلق، خطای متوسط نسبی و خطای احتمالی بین داده های واقعی کارخانه و مدل را به ترتیب برابر ب...
متن کاملمدل سازی و بهینه سازی سیکلون با جریان برگشتی برای جداسازی ذرات معلق در گاز
طبق نتایج بدست آمده مشخص شد هنگامی که دبی خوراک ورودی پایین است و در محدوده ی 365 تا 375 متر مکعب بر ساعت است و همچنین دبی جریان برگشتی بیش از 190 متر مکعب بر ساعت باشد بازده و کارایی بهتری داریم. وقتی که دبی جریان خوراک زیاد میشود به دلیل اینکه درصد دبی جریان پرتاب کننده پایین می آید بازده کمتری داریم. رابطه میان دبی جریان پرتاب کننده و بازده رابطه معکوس است و به دلیل افزایش اغتشاشات به واسطه ...
15 صفحه اولمدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
متن کاملبهینه سازی شبکه عصبی MLP با استفاده از الگوریتم ژنتیک موازی FinGrain برای تشخیص سرطان سینه
امروزه استفاده از سیستمهای هوشمند در تشخیص پزشکی به تدریج در حال افزایش است. این سیستمها میتوانند به کاهش خطایی که ممکن است توسط کارشناسان کمتجربه اتفاق بیافتد، کمک کند. بدین منظور استفاده از سیستمهای هوشمند مصنوعی در پیشبینی و تشخیص سرطان سینه که یکی از رایجترین سرطانها در بین زنان است، مورد توجه میباشد. در این تحقیق فرآیند تشخیص بیماری سرطان سینه با یک رویکرد دو مرحلهای انجام...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مجله فنی مهندسی فناوری های نوین در سیستم های انرژیجلد ۱، شماره ۲، صفحات ۱۸-۲۷
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023